15 research outputs found

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)

    The role of the amygdala in modulation and storage of emotional memories

    No full text
    The amygdala has long been known to play a critical role in emotional processing, in particular fear. In this respect it has been shown to play three major roles. First, it mediates the facilitating effects of emotional arousal in memory formation. Second, it is the site of storage for emotional memories themselves, in particular fear. And lastly, it mediates the expression of fear responses. The work presented in this thesis investigates each of these different functions of the amygdala. In the first chapter, I examined how glucocorticoids, which are known to enhance memory consolidation through their actions on the amygdala, affect the electrophysiological properties of the amygdala neurons. I show that glucocorticoids increase the excitability of principal amygdala neurons. In the second chapter, I investigated the role of REM sleep in consolidation of emotional memories. To this end, I examined the interactions between the amygdala, medial prefrontal cortex and hippocampus during sleep following fear learning. I show that theta coordination in this network during REM sleep participates in the consolidation of fear memories. In the third and fourth chapters, I investigated the role of the amygdala in storage and expression of fear memories. I show the different involvements of each amygdala nuclei in mediating conditioned fear expression. Lastly, I investigated the role of anxiety in fear learning. I show that anxiety can interfere with fear learning by resulting in fear generalization to safe cues and environments.Ph. D.Includes bibliographical referencesIncludes vitaby Sevil Duvarc

    Dopamine in fear extinction

    No full text
    The ability to extinguish fear memories when threats are no longer present is critical for adaptive behavior. Fear extinction represents a new learning process that eventually leads to the formation of extinction memories. Understanding the neural basis of fear extinction has considerable clinical significance as deficits in extinction learning are the hallmark of human anxiety disorders. In recent years, the dopamine (DA) system has emerged as one of the key regulators of fear extinction. In this review article, we highlight recent advances that have demonstrated the crucial role DA plays in mediating different phases of fear extinction. Emerging concepts and outstanding questions for future research are also discussed

    De novo mRNA synthesis is required for both consolidation and reconsolidation of fear memories in the amygdala

    No full text
    Memory consolidation is the process by which newly learned information is stabilized into long-term memory (LTM). Considerable evidence indicates that retrieval of a consolidated memory returns it to a labile state that requires it to be restabilized. Consolidation of new fear memories has been shown to require de novo RNA and protein synthesis in the lateral nucleus of the amygdala (LA). We have previously shown that de novo protein synthesis in the LA is required for reconsolidation of auditory fear memories. One key question is whether protein synthesis during reconsolidation depends on already existing mRNAs or on synthesis of new mRNAs in the amygdala. In the present study, we examined the effect of mRNA synthesis inhibition during consolidation and reconsolidation of auditory fear memories. We first show that intra-LA infusion of two different mRNA inhibitors dose-dependently impairs long-term memory but leaves short-term memory (STM) intact. Next, we show that intra-LA infusion of the same inhibitors dose-dependently blocks post-reactivation long-term memory (PR-LTM), whereas post-reactivation short-term memory (PR-STM) is left intact. Furthermore, the same treatment in the absence of memory reactivation has no effect. Together, these results show that both consolidation and reconsolidation of auditory fear memories require de novo mRNA synthesis and are equally sensitive to disruption of de novo mRNA synthesis in the LA

    Joint pausiness in parallel spike trains

    No full text

    Impact of predatory threat on fear extinction in Lewis rats

    Get PDF
    Humans with post-traumatic stress disorder (PTSD) are deficient at extinguishing conditioned fear responses. A study of identical twins concluded that this extinction deficit does not predate trauma but develops as a result of trauma. The present study tested whether the Lewis rat model of PTSD reproduces these features of the human syndrome. Lewis rats were subjected to classical auditory fear conditioning before or after exposure to a predatory threat that mimics a type of traumatic stress that leads to PTSD in humans. Exploratory behavior on the elevated plus maze 1 wk after predatory threat exposure was used to distinguish resilient vs. PTSD-like rats. Properties of extinction varied depending on whether fear conditioning and extinction occurred before or after predatory threat. When fear conditioning was carried out after predatory threat, PTSD-like rats showed a marked extinction deficit compared with resilient rats. In contrast, no differences were seen between resilient and PTSD-like rats when fear conditioning and extinction occurred prior to predatory threat. These findings in Lewis rats closely match the results seen in humans with PTSD, thereby suggesting that studies comparing neuronal interactions in resilient vs. at-risk Lewis rats might shed light on the causes and pathophysiology of human PTSD

    Dopamine neurons drive fear extinction learning by signaling the omission of expected aversive outcomes

    No full text
    Extinction of fear responses is critical for adaptive behavior and deficits in this form of safety learning are hallmark of anxiety disorders. However, the neuronal mechanisms that initiate extinction learning are largely unknown. Here we show, using single-unit electrophysiology and cell-type specific fiber photometry, that dopamine neurons in the ventral tegmental area (VTA) are activated by the omission of the aversive unconditioned stimulus (US) during fear extinction. This dopamine signal occurred specifically during the beginning of extinction when the US omission is unexpected, and correlated strongly with extinction learning. Furthermore, temporally-specific optogenetic inhibition or excitation of dopamine neurons at the time of the US omission revealed that this dopamine signal is both necessary for, and sufficient to accelerate, normal fear extinction learning. These results identify a prediction error-like neuronal signal that is necessary to initiate fear extinction and reveal a crucial role of DA neurons in this form of safety learning

    Dopamine neurons drive fear extinction learning by signaling the omission of expected aversive outcomes

    No full text
    Extinction of fear responses is critical for adaptive behavior and deficits in this form of safety learning are hallmark of anxiety disorders. However, the neuronal mechanisms that initiate extinction learning are largely unknown. Here we show, using single-unit electrophysiology and cell-type specific fiber photometry, that dopamine neurons in the ventral tegmental area (VTA) are activated by the omission of the aversive unconditioned stimulus (US) during fear extinction. This dopamine signal occurred specifically during the beginning of extinction when the US omission is unexpected, and correlated strongly with extinction learning. Furthermore, temporally-specific optogenetic inhibition or excitation of dopamine neurons at the time of the US omission revealed that this dopamine signal is both necessary for, and sufficient to accelerate, normal fear extinction learning. These results identify a prediction error-like neuronal signal that is necessary to initiate fear extinction and reveal a crucial role of DA neurons in this form of safety learning

    Impaired recruitment of dopamine neurons during working memory in mice with striatal D2 receptor overexpression

    No full text
    The dopamine (DA) system plays a major role in cognitive functions through its interactions with several brain regions including the prefrontal cortex (PFC). Conversely, disturbances in the DA system contribute to cognitive deficits in psychiatric diseases, yet exactly how they do so remains poorly understood. Here we show, using mice with disease-relevant alterations in DA signaling (D2R-OE mice), that deficits in working memory (WM) are associated with impairments in the WM-dependent firing patterns of DA neurons in the ventral tegmental area (VTA). The WM-dependent phase-locking of DA neurons to 4 Hz VTA-PFC oscillations is absent in D2R-OE mice and VTA-PFC synchrony deficits scale with their WM impairments. We also find reduced 4 Hz synchrony between VTA DA neurons and selective impairments in their representation of WM demand. These results identify how altered DA neuron activity—at the level of long-range network activity and task-related firing patterns—may underlie cognitive impairments
    corecore